Two-step modulus-based matrix splitting iteration method for horizontal linear complementarity problems
نویسندگان
چکیده
منابع مشابه
Modulus-based GSTS Iteration Method for Linear Complementarity Problems
In this paper, amodulus-based generalized skew-Hermitian triangular splitting (MGSTS) iteration method is present for solving a class of linear complementarity problems with the system matrix either being an H+-matrix with non-positive off-diagonal entries or a symmetric positive definite matrix. The convergence of the MGSTS iterationmethod is studied in detail. By choosing different parameters...
متن کاملModulus-based synchronous multisplitting iteration methods for linear complementarity problems
To reduce the communication among processors and improve the computing time for solving linear complementarity problems, we present a two-step modulus-based synchronous multisplitting iteration method and the corresponding symmetric modulus-based multisplitting relaxation methods. The convergence theorems are established when the system matrix is an H+-matrix, which improve the existing converg...
متن کاملThe modulus-based matrix splitting algorithms for a class of weakly nonlinear complementarity problems
In this paper, we study a class of weakly nonlinear complementarity problems arising from the discretization of free boundary problems. By reformulating the complementarity problems as implicit fixed-point equations based on splitting of the system matrices, we propose a class of modulus-based matrix splitting algorithms. We show their convergence by assuming that the system matrix is positive ...
متن کاملConvergence analysis of modulus-based matrix splitting iterative methods for implicit complementarity problems
In this paper, we demonstrate a complete version of the convergence theory of the modulus-based matrix splitting iteration methods for solving a class of implicit complementarity problems proposed by Hong and Li (Numer. Linear Algebra Appl. 23:629-641, 2016). New convergence conditions are presented when the system matrix is a positive-definite matrix and an [Formula: see text]-matrix, respecti...
متن کاملMatrix Linear Complementarity Problems
We consider the expected residual minimization formulation of the stochastic R0 matrix linear complementarity problem. We show that the involved matrix being a stochastic R0 matrix is a necessary and sufficient condition for the solution set of the expected residual minimization problem to be nonempty and bounded. Moreover, local and global error bounds are given for the stochastic R0 matrix li...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
ژورنال
عنوان ژورنال: Filomat
سال: 2020
ISSN: 0354-5180,2406-0933
DOI: 10.2298/fil2007171j